Main Article Content

Abstract

One in every five hundred women in their fertile years are affected by Absolute Uterine Factor Infertility  whose treatment is usually organ transplantation. But the success rate of complete recovery after this procedure is very minimal. Therefore, the concepts of tissue engineering in uterus has emerged as a potential solution. Uterine tissue is highly elastic in nature and is made up of several sheets of membranes and elastic fibrils. Therefore, objective of this study was to create a nanofibrous scaffolds by electrospinning method similar to native ECM using polycaprolactone (PCL) as a biomaterial. PCL nanofibers being highly hydrophobic, were surface modified by aminolysis, where primarily amine groups were introduced. The modified nanofibers were characterized by contact angle analysis, Fourier transformed infrared spectroscopy , and ninhydrin assay. For assessing their cytocompatibility, primary human uterine fibroblasts were cultured and analysed for their adhesion, morphology, proliferation, and viability . Our results showed  immobilization of NH2 groups on the PCL nanofibers significantly improved their capacity for uterine cell attachment and proliferation. The modified PCL fibers also provided the biochemical signals for the uterine cells to acquire a morphology indicating that they could be potentially used as a promising scaffold for uterine tissue engineering applications.

Keywords

Nanofibrous Scaffolds Uterine Tissue engineering Polycaprolactone Electrospinning Aminolysis

Article Details

Author Biographies

Gopal Pande, Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India

Dean and Professor,

Manipal Institute of Regenerative Medicine,

Manipal Academy of higher Education

Manasa Nune, Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India

Assistant Professor,

Manipal Institute of Regenerative Medicine (MIRM)

Manipal Academy of Higher Education (MAHE)

How to Cite
Srividya, H., Pande, G. ., & Nune, M. (2021). Aminolysis of Polycaprolactone Nanofibers for Applications in Uterine Tissue Engineering. Trends in Biomaterials & Artificial Organs, 35(4), 347-353. Retrieved from https://biomaterials.org.in/tibao/index.php/tibao/article/view/486